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Abstract

The aim of that paper is to study the estimation of maintenance efficiency in two imperfect repair
models, called Arithmetic Reduction of Intensity or Age model, both in the case of finite memory.
These models have been proposed by Doyen and Gaudoin (2004) and include some virtual age
models among which the one proposed by Kijima, Morimura and Suzuki (1998). First, the
asymptotic almost sure behavior of the failure and cumulative failure intensities of those models
is studied. The almost sure convergence and asymptotic normality of several estimators (including
maximum likelihood) of repair efficiency are derived, when the wear out process without repair
is known. Finally, results issued from the empirical study of the coverage rate of confidence
intervals for repair efficiency are given.

Introduction

All important industrial systems (like nuclear power plants, planes, trains) are subjected to corrective main-
tenance actions or repairs that are supposed to reduce the frequency of occurrence of system failures. The
assessment of the efficiency of these repairs is of great practical interest, but it has been seldom studied.
Stochastic modelling of the failure and repair process is usually done with random point processes. Let
{Ti}i≥1 be the successive failure times of a repairable system, starting from T0 = 0. Let Nt be the number of
failures observed up to time t. The repair times are assumed to be negligible or not taken into account. Then,
the failure process is defined equivalently by the random processes {Ti}i≥1 or {Nt}t≥0. The distribution of
these processes is completely given by the failure intensity, defined as:

∀t ≥ 0, λt = lim
dt→0

1
dt

P (Nt+dt −Nt− = 1|Ht−)

where Nt− is the left hand limit of Nt, Ht is the sigma-algebra generated by all the failure times that take
place up to time t and Ht− = ∪s<tHs.

1 Imperfect repair models

The basic assumptions on maintenance efficiency are known as minimal repair or As Bad As Old (ABAO)
and perfect repair or As Good As New (AGAN). In the ABAO case, each maintenance is supposed to leave
the system in the same state as it was before failure. The corresponding random processes are the non
homogeneous Poisson processes. These processes are such that the failure intensity is only a function of
time:

∀t ≥ 0, λt = λ(t)

In the AGAN case, each maintenance perfectly repairs the system and leaves it as if it were new. The
corresponding random processes are the renewal processes. These processes are such that the failure intensity
is defined as:

∀t ≥ 0, λt = λ(t− TNt−
)



Obviously, reality is between these two extreme cases: standard repair reduces failure intensity but does not
leave the system as good as new. This is known as imperfect repair or better than minimal repair.

Several models with that type of assumption have already been proposed (see for example a review in
Pham and Wang 1996). One of the most famous is the Brown and Proschan (1983) model, in which system
state after repair is AGAN with probability p and ABAO with probability 1−p. Another very important class
of models is the virtual age models proposed by Kijima (1989). Even if imperfect repair models have been
proposed, only a few of them have been statistically studied, especially in what concerned the estimation of
repair efficiency. Some authors like Shin, Lim and Lie (1996), Yun and Choung (1999), or Kaminskiy and
Krivtsov (2000) have proposed simulation results for the properties of maximum likelihood parameters in
some particular virtual age models. But no theoretical results have been proved.

This paper will be focused on the study of the properties of two classes of models known as Arithmetic
Reduction of Age (ARA) and Arithmetic Reduction of Intensity (ARI) models (Doyen and Gaudoin 2004).
The leading assumption of ARI models is to consider that each repair action reduces the failure intensity
of an amount depending only of the past of the failure process. Then an ARI model with memory m ≥ 1
(ARIm) has a failure intensity defined as:

λt = λ(t)− ρ

Min(m−1,Nt−−1)∑
j=0

(1− ρ)jλ(TNt−−j)

where λ(t) is the (deterministic) initial failure intensity (before the first failure). There exists interesting
particular cases of this class of models. The ARI∞ model supposes that repair reduces failure intensity of
an amount proportional to the current value of the intensity. It leads to:

λt = λ(t)− ρ

Nt−−1∑
j=0

(1− ρ)jλ(TNt−−j)

The ARI1 model considers that repair actions cannot reduce the global wear of the system, but only the
relative wear since the last repair. The corresponding intensity is particularly simple:

λt = λ(t)− ρλ(TNt−
)

The principle of the ARA class of models is to consider that repair rejuvenates the system such that its
intensity at time t is equal to the initial intensity at time At, where At ≤ t. The properties of At are the
same as those of λt in ARI models when the initial intensity is λ(t) = t. Then, by analogy with ARI models,
we can build ARA models. And the failure intensity of an ARAm model is:

λt = λ(t− ρ

Min(m−1,Nt−−1)∑
j=0

(1− ρ)jTNt−−j)

The ARA1 model has a particularly simple failure intensity: λt = λ(t−ρTNt−
) and appears to be the same as

the Kijima, Morimura and Suzuki (1988) model. In ARI and ARA models, repair efficiency is characterized
by a single parameter ρ:

• 0 < ρ < 1: imperfect but efficient repair

• ρ = 1: optimal repair (perfect for ARA models)

• ρ = 0: minimal or useless repair

• ρ < 0: harmful repair

Then, assessing repair efficiency in these models is estimating parameter ρ.



2 Asymptotic behavior of the failure process

ARIm and ARAm models with finite memory have an interesting property: there exists a so-called asymptotic
intensity. That is to say, the failure intensity has the same asymptotic behavior as the asymptotic intensity,
λ∞, equals for ARIm models to λ∞(t) = (1− ρ)mλ(t) and for ARAm models to λ∞(t) = λ((1− ρ)mt). This
property is true when the three following assumptions are verified :

• A1: ρ < 1,

• A2: λ(t) → +∞,

• A3: λ(t)− λ(t + o(1)) = o(λ(t)),

The proof of this result and of the following properties is done thanks to the martingale results of Andersen
and Co (1993) and Cocozza-Thivent (1997).

Property 1 For an ARIm or ARAm model with finite memory and under assumptions A1 to A3, the failure
intensity verifies:

λt
a.s.= λ∞(t) + o(λ∞(t))

Assumptions A2 and A3 are in particular verified with strictly increasing power functions for the initial
intensity:

• A4: λ(t) = αβtβ−1, α > 0 β > 1.

In addition, the difference between the failure intensity and the asymptotic intensity can be expressed.

Property 2 For an ARIm model with finite memory and under assumptions A1 to A3, or for ARAm model
with finite memory under assumptions A1 and A4, the cumulative failure intensity verifies:

Λt
a.s.= Λ∞(s) +

1− (1 + mρ)(1− ρ)m

ρ(1− ρ)m
ln(λ(t)) + o(ln(λ(t))) (1)

3 Estimation of repair efficiency

From these properties of the failure process, the almost sure convergence and asymptotic normality of some
estimators of repair efficiency can be derived. The convergence and normality are proved in the case where
the initial intensity is supposed to be known. Then, only parameter ρ has to be estimated. Let ρ̂MLE

t be
the maximum likelihood estimator (MLE) of ρ for an observation of the failure process over [0, t] and let us
assume that the MLE is researched in a known closed and bounded interval:

• Ã1: The true value of the repair efficiency parameter is in a known interval [ρ1, ρ2] such that −∞ <
ρ1 < ρ2 < 1. The MLE is searched in that interval.

Property 3 . For an ARIm model with finite memory and under assumptions Ã1, A2 and A3, or for
ARAm model with finite memory under assumptions Ã1 and A4, the maximum likelihood estimator of repair
efficiency parameter verifies, for a single observation of the failure process over [0, t]:

∀ε > 0,
∣∣ρ0 − ρ̂ML

t

∣∣ Λ(t)0.5−ε a.s.−−−−→
t→+∞

0

√
Λ(t)

(1− ρ0)m

[
(1− ρ0)m − (1− ρ̂ML

t )m
] L−−−−→

t→+∞
N (0, 1)

There exists explicit estimators (EE) having the same asymptotic properties with less restrictive assump-
tions.



Property 4 For an ARIm model with finite memory and under assumptions A1 to A3, or for ARAm model
with finite memory under assumptions A1 and A4, the explicit estimators:

ρ̂EI
t = 1−

(
Nt

Λ(t)

) 1
m

, for ARIm models

ρ̂EA
t = 1−

(
Nt

Λ(t)

) 1
m(β−1)

, for ARAm models

ρ̂EI2
t =

Λ(t)−Nt∫ t

0
λ(TNs) ds

, for ARI1 model

verify the same asymptotic properties as the MLE of property 3.

Thanks to the asymptotic normality of all that estimators, asymptotic confidence intervals for ρ can
easily be deduced. Results issue from the empirical study of the coverage rate of these intervals will be
developed in the oral presentation.
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